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Abstract
Attributed networks, in which network connectivity
and node attributes are available, have been increas-
ingly used to model real-world information sys-
tems, such as social media and e-commerce plat-
forms. While outlier detection has been extensively
studied to identify anomalies that deviate from cer-
tain chosen background, existing algorithms can-
not be directly applied on attributed networks due
to the heterogeneous types of information and the
scale of real-world data. Meanwhile, it has been
observed that local anomalies, which may align
with global condition, are hard to be detected by
existing algorithms with interpretability. Motivated
by the observations, in this paper, we propose to
study the problem of effective and efficient local
anomaly detection in attributed networks. In par-
ticular, we design a collective way for modeling
heterogeneous network and attribute information,
and develop a novel and efficient distributed opti-
mization algorithm to handle large-scale data. In
the experiments, we compare the proposed frame-
work with the state-of-the-art methods on both real
and synthetic datasets, and demonstrate its effec-
tiveness and efficiency through quantitative evalua-
tion and case studies.

1 Introduction
Anomalies refer to the noteworthy objects with patterns or
behaviors that significantly deviate from the background.
Anomaly detection has been intensively studied for various
applications, such as spam detection [Yang et al., 2012], fraud
detection [Rayana and Akoglu, 2015], events detection [Chen
et al., 2016] and computer security [Cheng et al., 2016]. Suc-
cessful anomaly detection plays a critical role in many infor-
mation systems towards achieving a secure cyberspace.

Due to the data characteristics in many real-world informa-
tion systems, anomaly detection faces new challenges. First,
attributed networks [Huang et al., 2017a; 2017b; Akoglu et
al., 2015] have been increasingly used in modeling complex
real-world information systems. Different from plain graphs,
in attributed networks, both connectivity information and
node properties are available. For example, in social networks
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Figure 1: A toy network of three communities with known attribute
distributions and an anomaly node n0.

with friendship relations as links, users can also be character-
ized by their interests, work background, and user-generated
posts. Unfortunately, existing anomaly detection algorithms
usually focus on either attribute information [Xiong et al.,
2011; Zhao and Fu, 2015; Jiang et al., 2015] or network
structure [Xu et al., 2007], or do not provide much interpreta-
tion for anomalies beyond visualization [Tong and Lin, 2011;
Akoglu et al., 2012]. Furthermore, real-world attributed net-
works usually contain large-scale data instances and high-
dimensional features. Given the heterogeneous and large-
scale attributed networks, existing anomaly detection meth-
ods cannot be simply applied.

In addition, it has been observed that some local anomalies
well align with the global condition and cannot be easily de-
tected. Take the attributed network in Fig. 1 as an example.
There are three clusters in the network. Each node has one
continuous numerical attribute a, and pc(a) represents the at-
tribute distribution of the instances in community c. By only
looking at node n0 in the overall distribution p(a), it is un-
likely to identify it as an anomaly. However, by collectively
examining the network structure and attribute information of
the node, we can clearly observe that n0 is an anomaly, as it
is inconsistent with other nodes in C1 according to the dis-
tribution in p1(a). This phenomenon can also be observed in
health provider networks, where the records declared by an
anomaly provider may look normal among all entities, but its
fraud activities can be revealed by a refined inspection in the
local community [Akoglu et al., 2015]. Thus, motivated by
these observations, we propose to investigate the problem of
local anomaly detection in large-scale attributed networks.
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To deal with the aforementioned challenges, in this pa-
per, we propose to collectively make use of network and at-
tribute information for effective and efficient anomaly detec-
tion. Specifically, we investigate how to extract insightful in-
formation from heterogeneous data sources as the basis for
spotting local abnormal nodes, as well as design an acceler-
ated algorithm to deal with large-scale data. The contribu-
tions are presented as follows:

• An integrated anomaly detection framework for attributed
networks is proposed. Network structure and node attribute
information are jointly considered for network clustering
and attribute distributions estimation. The normality score
of a node is measured within its local context.

• The model is interpretable as we are able to identify the
abnormal attributes of anomalies and measure their degrees
of abnormality.

• A novel parallel algorithm is developed to accelerate the
optimization process to resolve networks, especially when
the given network is sparse in terms of links or attributes.

• The effectiveness and efficiency of our framework are
demonstrated through experiments on real-world and syn-
thetic networks, as well as case studies.

2 Local Anomaly Detection Framework
In this paper, we propose a novel framework for Accelerated
Local Anomaly Detection (ALAD) in attributed networks.
The notations used in this paper are introduced as follows.
We use bold uppercase letters (e.g. A) to denote matrices.
We represent the (n,m)th entry of a matrix as Anm, the nth
row of a matrix as An∗, and the mth column as A∗m. The
(i, j)th block of a matrix is represented using Ai,j . We de-
note the `2-norm of a vector as ‖ · ‖2, and Frobenius norm of
a matrix as ‖ · ‖F . Let N = {V,G,A} be a target attributed
network, where V is a set of N nodes, and G ∈ RN×N

≥0 is
the weighted adjacency matrix. Gnm equals to the positive
edge weight if there is a link between nodes n and m, and 0
otherwise. A ∈ RN×K

≥0 represents the node attribute matrix,
where An∗ describes the attributes associated with node n.
We assume that the network is undirected, and all attribute
values are non-negative.

2.1 Problem Statement
Anomalies are defined as the objects that “arouse suspicions
that it was generated by a different mechanism” [Hawkins,
1980]. According to the definition, there are three questions
to be answered for designing a detection method: (1) where
is the local context in which an object locates; (2) what is
the probable data generation mechanism in such local con-
text; (3) how to measure the suspicion of current object with
respect to the contextual mechanism. Under this problem set-
ting, each object n can be characterized using two types of
features [Chandola et al., 2009]: 1) context features (wn)
which determine the location, group or genre of an object,
e.g., the spatial coordinates of a city, or the category labels
of a commercial product; 2) content features (an) which
describe the attributes, behaviors or properties of an object,
e.g., the demographics of a city, or the user reviews of a

product. The neighbors of object n can be discovered by
comparing wn with other wn′ , n′ 6= n. In attributed net-
works, the information for determining the context features
of a node is not limited to its connection status. The at-
tribute information may also affect the role of a node in its
local context. Let hc denote the attribute distributions mea-
sured from {an1

, an2
, ...} where objects n1, n2, ... belong to

the same context c. The suspicious score of object n be-
ing an anomaly with respect to context c can thus be formu-
lated as the disparity between an and hc. Many traditional
anomaly detection algorithms, either explicitly or implic-
itly, have adopted the three factors above [Gao et al., 2010;
Liang and Parthasarathy, 2016; Perozzi et al., 2014; Liang et
al., 2017]. In some cases, wn and an refer to the same fea-
ture set from homogeneous data sources [Breunig et al., 2000;
Jiang et al., 2015].

Based on the terminologies described above, we formally
define the problem as follows: Given the attributed network
N , we aim at developing a framework to identify anomalies
as nodes o whose content features ao significantly deviate
from the feature distribution hc of their context localized by
the context features wo of o.

2.2 Context Extraction and Summarization from
Heterogeneous Data

For the given network N , each node n is characterized by
both Gn∗ ∈ RN

≥0 and An∗ ∈ RK
≥0, which cannot be directly

concatenated as wn due to their heterogeneity and high di-
mensionality. In fact, the number of factors that determine the
dependencies in a network is limited [Li et al., 2017]. There-
fore, we would like to first transform the original features
to a low-dimensional vector Wn∗ ∈ RC

≥0. Then a straight-
forward solution for anomaly detection is to apply heteroge-
neous network embedding methods [Chang et al., 2015] to
build W, perform clustering on nodes, estimate the data dis-
tribution on each cluster (e.g., take the mean values), and at
last find anomalies. This pipeline, however, is limited by sev-
eral problems. The noise in attributes may affect the accuracy
of distribution estimation. Moreover, it relies on the perfor-
mance of specific embedding methods, while the superposi-
tion of embedding and clustering also significantly increases
the computational cost. The anomaly detection step tends to
be a byproduct of embedding and clustering methods.

Because of the reasons above, we propose to map the
data to a C-dimensional latent space in which each Wnc al-
ready corresponds to a group or topic for c ∈ [1, C]. In
the latent space, taking the attribute matrix A as an exam-
ple, the property of each node can be seen as a weighted lin-
ear composition of the aspects from C groups, i.e., An∗ ≈∑C

c=1 WncHc∗, where Wnc measures how close is node n
affiliated with cluster c, and Hck indicates the degree to which
the attribute k is associated with cluster c [Xu et al., 2003].
In another word, Wn∗ represents the context features of ob-
ject n, while Hc∗ encodes the attribute distributions of cluster
c. The problem of learning latent factors, i.e. approximating
A ≈ WH, can be solved via non-negative matrix factor-
ization (NMF) [Lee and Seung, 2001]. Here W ∈ RN×C

≥0 ,
H ∈ RC×K

≥0 , and C is the number of latent factors.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

2338



Despite the heterogeneity of the two information sources
G and A, both of their row dimensions represent network
nodes, which provides the basis for joint consideration. Moti-
vated by symmetric nonnegative matrix factorization [Kuang
et al., 2012], we incorporate links information in G and pro-
pose the objective function formally as below:

minW,H ‖G−WWT ‖2F + α‖A−WH‖2F
+ γ(‖W‖2F + ‖H‖2F ),

s.t. W ≥ 0, H ≥ 0.

(1)

Two nodes i and j that are closely correlated in the same con-
text will have similar representation vectors Wi∗ and Wj∗.
The regularization terms ‖W‖2F and ‖H‖2F are used to avoid
overfitting and the affect of data noise. The elements in W
and H are constrained to be non-negative, not only because
G and A are non-negative, but also to achieve interpretability.
As the solution for NMF is not unique, we further normalize
the factor matrices as below:

Hc,k ← Hc,k/

√∑
k

H2
c,k, Wn,c ←Wn,c

√∑
k

H2
c,k. (2)

The proposed model has several nice properties. First,
NMF based clustering is semantically interpretable [Kuang
et al., 2012]. Second, the model does not have a strong as-
sumption such as positive semidefinite on the network, so it
is general to various real-world applications. Third, by apply-
ing the bi-factorization scheme instead of its tri-factorization
counterpart [Long et al., 2006], we could avoid convoluted
interactions between parameters, thus enabling to develop ef-
ficient optimization algorithms.

2.3 Local Suspiciousness Evaluation
The suspiciousness of a node should be evaluated within a
proper context. As a node n may belong to several groups
simultaneously, its suspiciousness can be measured as:

s(n) = p(n; c) s(n, c) = W̃n,c s(n, c), (3)

where W̃n,c = Wn,c/
∑

c Wn,c is interpreted as the likeli-
hood that node n belongs to group c [Shashanka et al., 2008].

After locating nodes in the latent space, we want to com-
pute how significantly node n deviates from its background
condition. To uniformly handle different types of distribu-
tions (e.g., Gaussian or Bernoulli) in real-world systems, we
transform all types of attributes to categorical ones [Catlett,
1991], so that Ank counts the occurrence of attribute k on
node n. As mentioned before, the suspiciousness of node n
can be measured by the disparity between an and hc. Here
we take content features an = An∗ and distribution vector
hc = Hc∗. Some commonly used metrics for quantifying the
difference between two vectors include Euclidean distance
‖An∗−Hc∗‖2, cosine similarity cos(An∗,Hc∗) and Kullback
Leibler (KL) divergence D(An∗‖Hc∗). In many real-world
networks, the attributes are expected to be high-dimensional
and sparse, so Euclidean distance and KL divergence may
not perform well [Zimek et al., 2012]. Here we use cosine
similarity to calculate the normality score, i.e. inverse of sus-
piciousness score, between the two vectors:

s(n, c) = cos(An∗,Hc∗) =
< An∗,Hc∗ >

‖An∗‖2‖Hc∗‖2
. (4)

The intuition behind the score is that, if there is little overlap
between the attributes of a node n and the distribution of its
local context, then the node should be viewed as abnormal.

After computing the normality score for each node, we can
have a ranked list in which nodes are sorted in ascending or-
der with respect to their scores, where nodes ranked higher
are considered as anomalies.

3 Accelerated Optimization
Typical optimization algorithms for NMF, such as multiplica-
tive update [Lee and Seung, 2001] and stochastic gradient de-
scent (SGD) [Koren et al., 2009], are computationally expen-
sive and cannot be simply applied to our problem. The former
is costly for each round of parameter update, while the latter
uses only a small number of data instances at each iteration.
In this section, we will introduce a distributed algorithm for
accelerated optimization.

3.1 Parallel Optimization Scheme
In parallel algorithms, concurrent implementations are re-
quired to be independent of each other to avoid interference.
To have a clearer view of the objective function, as well as to
schedule the updates of parameter batches, we rewrite Eq. (1)
in the block-wise summation form as follows,

LG,A(W,H)

=
∑
i,j

(‖Gi,j −WiWjT ‖2F +
γ

2B
‖Wi‖2F +

γ

2B
‖Wj‖2F )

+
∑
i,k

( α
∑
l

‖Ai,k −WiHk‖2F +
γ

B
‖Hk‖2F )

=
∑
{i,j,k}

(‖Gi,j −WiWjT ‖2F︸ ︷︷ ︸
L

Gi,j

+
γ

2B
‖Wi‖2F +

γ

2B
‖Wj‖2F

+
α

2
‖Ai,k −WiHk‖2F︸ ︷︷ ︸

L
Ai,k

+
α

2
‖Aj,k −WjHk‖2F︸ ︷︷ ︸

L
Aj,k

+
γ

B
‖Hk‖2F )

=
∑
{i,j,k}

Li,j,k(W
i,Wj ,Hk),

(5)
where B represents the number of splits on each dimension,
and the superscripts denote the position of each block. An in-
tuitive illustration of problem segmentation is shown in Fig.2.
To approximate Gi,j ∈ RNi×Nj , we only need to update Wi

and Wj , while the local factorization of Ai,k only involves
Wi and Hk. The two dimensions of G are identically par-
titioned due to its symmetry. In practice, G and A can be
segmented into nonuniform blocks, depending on the entry
density in different matrix regions and computing resources
available on different machines in a distributed system.

We design a parallel mini-batch SGD algorithm to effi-
ciently solve the problem. To generalize, let L(θ) denote
the objective function, where θ = {W,H} represents the
parameters to learn. L(θ) =

∑
U∈{i,j,k} LU (θ), in which

U represents an instances set {Gi,j ,Ai,k,Aj,k} across the
two matrices. Starting from initial θ0, traditional mini-batch
stochastic gradient descent refines the parameter by iterating
the update: θt+1 = θt − εt∇LU (θt), where −∇LU (θ) is the
steepest-descent direction of L(θ) over the data samples in U .
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Figure 2: Matrices segmentation and parallel optimization
scheme. There are three interchangeable sets {G1,2,A1,3,A2,3},
{G4,4,A4,1,A4,1} and {G3,5,A3,5,A5,5}.

An example of instances set can be found in in Fig.2, where
U = {G1,2,A1,3,A2,3} makes W1,W2,H3 to be updated.
However, sequential SGD does not fully utilize the compu-
tation bandwidth. Motivated by the concept of instance-level
interchangeability [Gemulla et al., 2011], we propose the def-
inition of interchangeable sets as below:

Definition 1. U1,U2 are interchangeable sets concerning a
loss function L if any two instances u1 ∈ U1 and u2 ∈ U2 are
interchangeable, where u1, u2 are interchangeable if

∇Lu1(θ) = ∇Lu1(θ − ε∇Lu2(θ)),

∇Lu2
(θ) = ∇Lu2

(θ − ε∇Lu1
(θ)).

(6)

Interchangeable sets can be processed in parallel without
interference. Two sets U1 = {Gi1,j1 ,Ai1,k1 ,Aj1,k1} and
U2 = {Gi2,j2 ,Ai2,k2 ,Aj2,k2} are guaranteed to be inter-
changeable if i1 6= i2, j1 6= j2, k1 6= k2, i1 6= j2 and i2 6= j1.
To fully utilize the computation resources and to guarantee in-
terchangeability between instance sets, the parallel optimiza-
tion scheme with three interchangeable sets is shown in Fig.2.
Instance sets in different colors can be processed in parallel.
Picking one data block will lock all other blocks in the same
row or column at current iteration. The detailed optimiza-
tion process can be found from line 2 ∼ 9 in Alg. 1. After
obtaining the factor matrices W and H, we calculate the sus-
piciousness score of each node within various groups, and
return the sorted node list where anomalies are ranked higher
than normal objects (from line 10 ∼ 15 in Alg. 1).

3.2 Efficient Computation for Sparse Data
Many real-world networks are sparse, meaning that the num-
ber of links is usually very small [Zhang and Yu, 2015]. As
a result, the gradient computation involving the blocks in G
can be processed more efficiently as below:

∂LGi,j (Wi,Wj)

∂Wi
=(Gi,j −WiWjT )Wj

=(0G + SG −WiWjT )Wj

=−Wi(WjT Wj) +
∑

{r,c,g}∈SG

gerW
j
c∗

(7)

where er is the column vector of length Ni with one 1 at po-
sition r and 0s otherwise. Here Gi,j is separated into two
parts, a matrix of all zeros 0G ∈ RNi×Nj and a sparse ma-
trix SG = {(r1, c1, g1), (r2, c2, g2), ...} in the form of the

Algorithm 1: Accelerated Local Anomaly Detection in
Attributed Networks

Input: G, A, C, α, γ.
Output: A node list l sorted based on normality score.

1 Initialize W, H, and segment G, A, W and H;
2 while not converged do
3 Randomly generate a set of 3-tuples:

S = {(i1, j1, k1), (i2, j2, k2), ...} where any two
instance sets are interchangeable;

4 for (i, j, k) ∈ S in parallel do
5 W

′i ←Wi − εt∇WiLi,j,k

6 W
′j ←Wj − εt∇WjLi,j,k (if i 6= j)

7 Hk ← Hk − εt∇HkLi,j,k

8 Wi ←W
′i, Wj ←W

′j (if i 6= j)
9 Non-negativity projection for Wi, Wj and Hk;

10 Normalize W and H according to Eq. (2);
11 for c = 1 : C do
12 Find members in group c: groupc = {nc

1, n
c
2, ...}, so that

W̃n,c ≥ τ for n ∈ groupc, where τ is the threshold;
13 Compute local normality score s(n, c), n ∈ groupc;

14 Compute s(n) according to Eq. (3) as the global normality
score for each n ∈ [1, N ];

15 Return the sorted list of nodes l = {n1, n2, ..., nN} so that
s(n1) ≤ s(n2) ≤ ... ≤ s(nN ).

(row, column, value) list. It is convenient for processing
large sparse datasets since Gi,j can be stored in its sparse
form throughout the computation. To approximate the matrix
in which zero entries are dominant, we can randomly sample
only a portion of zero entries as 0′G for parameters update at
each iteration [Devooght et al., 2015], so that:

∂LGi,j (Wi,Wj)

∂Wi
=−

∑
{r′,c′,0}∈0′

G

(Wi
r′∗W

jT

c′∗)er′W
j
c′∗

+
∑

{r,c,g}∈SG

(g −Wi
r∗W

jT

c∗ )erW
j
c∗.

(8)

If we set the size of 0′G to be comparable to that of SG,
then for each task, the time complexity for parameter up-
date is linear to the number of links included in Gi,j , i.e.
O(‖Gi,j‖0), where ‖ · ‖0 means the 0-norm of a matrix.
Similar strategies can be applied for factorizing blocks in
A if it is sparse, then the time complexity for its update is
O(‖Ai,k‖0 + ‖Aj,k‖0). Therefore, the time complexity of
each iteration is O(‖Gi,j‖0 + ‖Ai,k‖0 + ‖Aj,k‖0), which is
linear to the number of data instances.

4 Experiments
In this section, we conduct experiments for evaluating the
effectiveness and efficiency of ALAD compared with other
baseline methods. We also perform case studies to illustrate
how ALAD achieves interpretability.

4.1 Datasets
The experiments are conducted on both synthetic and real
datasets. We generate a series of synthetic attributed net-
works with known clusters and ground-truth anomalies.
The network generation algorithm is based on the partition
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model [Perozzi et al., 2014]. Once the total number of nodes
N , the number of clusters C and the number of members in
each cluster NC are determined, the adjacency matrix is par-
titioned into blocks. Let pij be the link density for (i, j)th
block, where pii > pij(i 6= j), so that diagonal blocks cor-
respond to actual clusters. The number of connections per
node is constrained to follow Zipf’s law. We only consider
undirected networks here. Unless otherwise stated, we set
pi,i = 0.2 and pi,j = 0.5pi,i/C. To make the problem closer
to real situations, we let each community i have a proba-
bility of 0.2 to have an exceptionally high connection rate
(p′ij = 40pij) to another community j. Each cluster is as-
signed with a set of key attributes, and nodes within the same
cluster are more likely to have similar attribute patterns. Only
categorical attributes are considered. For attribute k, its value
is drawn from a Bernoulli distribution with success probabil-
ity of pc,k for cluster c. Key attributes are assigned with larger
pc,k value. We set 10% of attributes to be key attributes, and
pc,k = 0.3 for key attributes and pc,k = 0.02 for others.
We generate five networks in the experiment. We fix N =
10,000, C = 100, and vary K = {100, 200, 300, 400, 500}.
In each network, 100 anomaly nodes are randomly generated
by distorting their attributes.

Besides synthetic networks, we employ four real-world
datasets: Disney, Books [Muller et al., 2013], PolBlog [Per-
ozzi et al., 2014] and DBLP [Silva et al., 2012]. Disney
and Books are co-purchase networks extracted from Ama-
zon. PolBlog is a citation network of online blogs. DBLP
is an academic co-authorship network. The first two are used
for quantitative comparison between our model and baseline
methods, while the rest are applied in case studies. The statis-
tics of these datasets are listed in Table 1. ra denotes the ratio
of anomalies. Numerical attributes are transformed into cate-
gorical ones in preprocessing [Catlett, 1991].

4.2 Baseline Methods
The proposed anomaly detection algorithm ALAD is com-
pared with the following baseline methods:
• CODA is a community-based anomaly detection algo-

rithm on attributed networks using Hidden Markov Ran-
dom Fields (HMRF) [Gao et al., 2010].
• LOF identifies contextual outliers using only attribute

information based on the k-Nearest Neighbors algo-
rithm [Breunig et al., 2000].

• GOutRank measures anomaly score of each node based
on the statistics of its cluster [Muller et al., 2013].

• NrMF applies NMF for low-rank approximation, and uses
residuals to measure anomaly score [Tong and Lin, 2011].
Here we use the sum of row-residuals as the anomaly score
of each node.

• GLOB is the non-clustering version of ALAD, which de-
tects global anomalies instead of local ones.

• ALAD TS is a two-stage variation of ALAD, where we
first partition the network only using G and then detect out-
liers in each community using A. The hc of each cluster is
the averaged attribute value over all members.

For each method, nodes are ranked in ascending order ac-
cording to their normality (or abnormal) scores as the output,

Dataset N K |E| ra
Disney 124 347 334 0.048
Books 1,418 1,943 3,695 0.020

PolBlog 362 44,839 2,576 -
DBLP 108,030 23,285 276,658 -

Table 1: Details of the real-world datasets.

CODA LOF GOutRank NrMF GLOB ALAD TS ALAD
Disney 0.202 0.309 0.303 0.274 0.144 0.304 0.336
Books 0.058 0.019 0.020 0.052 0.045 0.054 0.061

Table 2: Algorithm performance on the real-world datasets.

where a decent detection model would be able to rank the true
anomalies earlier (or later) than normal ones. To evaluate the
performance quantitatively, we use the Area Under Precision-
Recall Curve (AUC-PR) as the metric.

4.3 Effectiveness Evaluation
We first analyze the anomaly detection accuracy on synthetic
attributed networks as shown in Fig.3. Some observations can
be drawn as follows:
• ALAD outperforms baseline methods in most cases. The

approaches that utilize both links and attributes informa-
tion (CODA, NrMF, ALAD TS, ALAD) generally have
better performance, which validates the importance of ap-
plying heterogeneous information sources.

• The advantage of ALAD and NrMF is more obvious as the
number of attributes increases because of: (1) the promo-
tion of the attributes’ roles in discovering neighborhood;
(2) the attenuated effect of noise from sampling process so
that more accurate community structures are extracted.

• The performance of GLOB is worse than that of most other
methods which perform anomaly detection regionally in
networks. It thus justifies the importance of identifying
anomalies within certain structural or semantic groups.

• The proposed ALAD is better than its two-stage variation,
which validates the effectiveness of combining heteroge-
neous information for jointly determining neighborhoods
and their internal attribute distributions.
The experimental results of different methods on real-

world networks are presented in Table 2. Similar observa-
tions can also be drawn as synthetic data experiments. For
examples, approaches accumulating the effect of individual
attributes have better performance, and ALAD is better than
its two-stage variation. The former phenomenon is more ob-
vious in Books dataset where the network size is relatively
larger, which is in accordance with the perception limitation
of human labellers since it is more difficult for people to get
a panoramic view as the network size grows.

To further investigate the significance of involving links in
solving our problem, we remove the adjacency matrix from
the datasets, and apply CODA, NrMF and ALAD on only
the attribute matrix. Fig. 4 indicates the difference between
jointly using heterogeneous information sources and using
only attribute information. The absence of structural infor-
mation weakens the capability of all detectors as reflected by
lower AUC scores. It is also worth noting that the perfor-
mances of CODA and ALAD are similar when only consid-
ering attribute information, which is reasonable since they are
relevant with the K-means algorithm on attributes in this case.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

2341



100 200 300 400 500
0

0.2

0.4

0.6

Number of Attributes

A
U

C
PR

ALAD
ALAD TS
CODA
LOF
GOutRank
NrMF
GLOB
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Figure 4: The role of links in identifying anomalies.

4.4 Efficiency of ALAD
In this section, we study the efficiency of our model. The ex-
periments are run on a Linux machine with 8 Intel i7 CPUs
with 3.40GHz. The multiprocessing module in Python is used
for parallel data processing. Although theoretically the dis-
tributed implementation of optimization processes can reduce
the time of each iteration, we can benefit from it only when
the computational load per task is not too small that the com-
munication overheads start to dominate.

To evaluate the efficiency of our framework, we compare
ALAD with its sequential version ALAD SEQ and CODA.
LOF is not considered because it does not leverage structural
information. GOutRank and NrMF are not included because
they rely on the clustering result of ALAD. For ALAD SEQ,
different blocks are processed sequentially. When imple-
menting ALAD, we setB = 8 for Disney and Books,B = 16
for Polblog and Synthetic, and B = 24 for DBLP. The syn-
thetic attributed network with 500 attributes is used. The run-
ning times of each method on different datasets are shown in
Table 3. We do not obtain reasonable results of CODA on
DBLP. The result shows that, when the dataset is relatively
small, CODA is advantageous in speed since they do not have
communication costs. However, as the data size grows larger,
ALAD becomes more advantageous than the baseline meth-
ods. The speed-up effect of parallel implementation, espe-
cially when computational cost on each task is dominant over
the system overhead.

4.5 Case Studies
The first case study we consider is on PolBlog dataset. As
shown in Table 4, four sampled anomalies are listed for expla-
nations. The attributes of each node are the words appeared
in the text samples of blog websites. Here abnormal key-
words refer to those with low frequency in the whole dataset
corpus, but appear in the anomaly blogger. Therefore, the
words of anomalies listed are lack of political flavor. Some
of their posts actually focus on other topics such as wedding

CODA ALAD SEQ ALAD
Disney 2 109 31
Books 107 1,079 270

PolBlog 267 3,242 427
Synthetic500 10,820 8,750 1,350

DBLP - 23,497 2,550

Table 3: Running time (in seconds) of different methods.

Anomaly (.com) Abnormal Keywords
thepatriette whoo, niece, hoo, wishes, dancing, married, wedding

bronxpundit.blog-city shaolin, fairytale, monks, kant, hamburgers, cuisine
opiniontimes photon, quantum, mechanics, planet, physics, atomic

ewackos.blogspot restaurateurs, horsemeat, eatery, chargrilled, steaks

Table 4: Community anomalies in PolBlog dataset.

Anomaly Key Normal Attributes
A. Sharma: convert, current, wavelet, compress, imag, transform,
output, multipl, inductor, control base, lossless, denois, filter, code,
Marcel Dasen: distribut, router, semant, servic, mine, inform,
multicast, activ, architectur, video integr, extract, page, databas, queri
Andy C. Hung: error, pyramid, local, reliabl, system, multi,
quantiz, compress, resili, imag mobil, multicor, hoc, schedul, ad
G. Manimaran: constrain, syn, 3d, structur, mdgrape, comput, tflop,
flood, tree, multicast, mitig molecular, protein, gordon, amyloid

Table 5: Community anomalies in DBLP dataset.

description (thepatriette.com), physics (opiniontimes.com) or
food (ewackos.blogspot.com), which are not commonly dis-
cussed in political events. The result of the second case
study on DBLP is shown in Table 5. We run ALAD on the
network to detect research communities and internal outliers.
The top frequent technical terms occurring in each commu-
nity are shown in the right column. The anomalies are shown
in the left column followed by their representative keywords.
The anomalies are researchers whose research topic differs
from those of their peers in the same community. For ex-
ample, the papers of Marcel Dasen included in the dataset
focus on computer networks, which is a less studied topic in
information retrieval community. Therefore, ALAD can ef-
fectively summarize the topic distributions of network com-
munities, and spot anomalies with different attribute patterns.

5 Conclusions and Future Work
In this paper, we introduce an effective and efficient frame-
work for identifying anomalies in attributed networks, where
heterogeneous information sources are collectively used for
determining refined neighborhood and locally assessing the
normality of internal node entities. We develop a mini-batch
SGD based method to accelerate the optimization and han-
dle large datasets in real-world scenarios. Experiments on
real and synthetic datasets indicate the effectiveness and ef-
ficiency of our approach. The future extensions of this work
include studying the correlation between different attributes,
dealing with dynamic networks that evolve over time, as well
as detecting anomaly clusters instead of individuals.
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